Einfache Wahrscheinlichkeitsrechnung

Aufgaben:

  1. Messergebnis:[0,0,2,2,5,4,6,0,9,10,6,5,11,6,6,15,14,1,0,17].
    a) Bestimme die Häufigkeiten.
    b) Bestimme W(x>2).
    c) Wie hoch ist der Erwartungswert?
  2. Messergebnis:[1,2,1,0,5,1,5,6,9,7,1,6,12,14,15,3,7,10,8,12,8,9,8,19,24].
    a) Bestimme die Häufigkeiten.
    b) Bestimme W(x>3).
    c) Wie hoch ist der Erwartungswert?
  3. Messergebnis:[0,0,2,2,5,4,6,0,9,2,3,4,10,8,11,0,6,5,11,6,6,15,14,1,0,17].
    a) Bestimme die Häufigkeiten.
    b) Bestimme W(x>1).
    c) Wie hoch ist der Erwartungswert?

Strichliste – Sortieren hilft:

tipp1a

Strichliste zu 1a:
strichliste_1

Vollständige Lösung Tabellenkalkulation:
Tabellenkalkulation lässt sich gut anwenden, hat aber einen kleinen Nachteil: die Anzahl der Messergebnisse erfordert jeweils Anpassungen. Die Ausgabe ist sehr schön, die mathematische Vorgangsweise aber eher weniger transparent.

strichliste_2

Programmcode:

load(descriptive);
x:[0,0,2,2,5,4,6,0,9,10,6,5,11,6,6,15,14,1,0,17];
k:2;
G:discrete_freq(x);
X:G[1];
H:G[2];
n:length(H);
N:sum(H[i],i,1,n);
p:H/N;
W:sum(p[i],i,k+1,n);
E:sum(p[i]*X[i],i,1,n),numer;
E:floor(E*10+0.5)/10.0;

Das Unterprogramm descriptive ermöglicht Gruppierung mit discrete_freq()

Programmcode mit benutzerdefinierter Funktion:

A:[[0,0,2,2,5,4,6,0,9,10,6,5,11,6,6,15,14,1,0,17],2]
/* EINGABE kann verändert werden */;
f(x,k):=block(
load(descriptive),
G:discrete_freq(x),
X:G[1],
H:G[2],
n:length(H),
N:sum(H[i],i,1,n),
p:H/N,
W:sum(p[i],i,k+1,n),
E:sum(p[i]*X[i],i,1,n),numer,
E:floor(E*10+0.5)/10.0,
"Ergebnis"
);
f(A[1],A[2]);
display(W,E);

Ausführung mit Maxima Onlinehttp://maxima-online.org/?inc=r-1301181831

Programmcode (alle Aufgaben auf einmal):

f(L):=block(
load(descriptive),
Ergebnis:[],
G:discrete_freq(L[1]),
X:G[1],
H:G[2],
n:length(H),
N:sum(H[i],i,1,n),
p:H/N,
W:sum(p[i],i,L[2]+1,n),
E:sum(p[i]*X[i],i,1,n),numer,
E:floor(E*10+0.5)/10.0,
Ergebnis:append(Ergebnis,[W,E])
);
Aufgaben: matrix(
[[0,0,2,2,5,4,6,0,9,10,6,5,11,6,6,15,14,1,0,17],2],
[[1,2,1,0,5,1,5,6,9,7,1,6,12,14,15,3,7,10,8,12,8,9,8,19,24],3],
[[0,0,2,2,5,4,6,0,9,2,3,4,10,8,11,0,6,5,11,6,6,15,14,1,0,17],1]
)
/* Eingabe darf geändert werden */;
A:args(Aufgaben);
map(f,A);

Es gibt also 3 wesentliche Schritte:

pap

Die Ausführung mit Maxima Online: http://maxima-online.org/?inc=r-607858086

Hinweis: ohne Computerunterstützung ist die Anwendung der Gegenwahrscheinlichkeit anzuraten.

Advertisements

Lineare Gleichungen

Grundaufgabe:

image

Man erfinde 10 lineare Gleichungen und ermittle ihre Lösungen mit Maxima Online,

  • zuerst einzeln und dann
  • mit Listenverarbeitung.

Programmcode mit Listenverarbeitung:

g:[
(x-3)+(x-5)-(x+4)=3,
3*(x+4)-2*(x+8)=5*(x-3),
-4*(x-8)+a*(x-3)=b
];
makelist(solve(g[i],x),i,1,length(g));

Probelauf mit Maxima Online: http://maxima-online.org/?inc=r-994707242

Wahrscheinlichkeitsverteilung

Eine Schularbeitsstatistik nach dem österreichischen Notensystem:

Wahrscheinlichkeitsverteilung

Fragen zum “Aufwärmen”:

  1. Wie viele Schüler/innen haben mitgemacht?
  2. Wie viele Schüler/innen haben die Note 2 = “Gut” bekommen?
  3. Wie viele Schüler/innen haben die Note 5 = “Nicht genügend”
    bekommen?
  4. Wie viele Schüler/innen haben eine positive Note bekommen?

Programmcode für die Bestimmung der Wahrscheinlichkeitsverteilung:

X:[1,2,3,4,5];
H:[2,6,3,4,5];
n:length(X);
N:sum(H[i],i,1,n);
P:H/N;
Kontrolle:sum(P[i],i,1,n);

Fragen zur Wahrscheinlichkeitsverteilung der Schularbeitsnoten:

1. Wie groß ist die Wahrscheinlichkeit, dass die Note besser 
   als 3 ist?
2. Wie groß ist die Wahrscheinlichkeit, dass die Note schlechter 
   als 2 ist?
3. Wie groß ist die Wahrscheinlichkeit, dass die Note 
   bestenfalls 2 ist?
4. Wie groß ist die Wahrscheinlichkeit für eine positive Note?

Berechnungen mit Maxima Online: http://maxima-online.org/?inc=r1532874979
mit Fragen: http://maxima-online.org/?inc=r-120341521

Endwert einer nachschüssigen Rente

Endwert einer nachschüssigen Rente

Die Grundaufgabe der Rentenrechnung

Programmcode:

R:5000;
p:4;
n:5;
i:p/100.0;
r:1+i;
E:R*(r**n-1)/i,numer;
E:E*r**2;
E:floor(E*100+0.5)/100.0;

Maxima Online: http://maxima-online.org/?inc=r-337318279

Wie könnte die Aufgabenstellung für die folgende Rechnung formuliert sein?
http://maxima-online.org/?inc=r-1823711827

Faktorenzerlegung von Termen

Aus einem Skriptum des Jahres 2005:
Faktorenzerlegung von Termen
Gegeben sind 4 quadratische Terme. Wenn möglich, soll eine reelle Faktorenzerlegung gefunden werden.

Aufgabe: Man erstelle eine Lösung mit Listenverarbeitung!

Programmcode:

Term:[x^2-8*x+15,x^2-8*x+16,x^2-8*x+17,x^2-8*x+12];
Faktorisiert:factor(Term);
[transpose(Term),transpose(Faktorisiert)];

Lösung mit Maxima Online: http://maxima-online.org/?inc=r811096629
mit gezeichneter Term-Liste: http://maxima-online.org/?inc=r263870178

Übungsaufgaben dazu:

  1. Man erstelle Wertetabellen für die gegebenen Terme, skizziere die Wertetabellen und liefere Fotos von den Skizzen ab.
  2. Man erstelle geeignete Termlisten durch Kopfrechnen.
  3. Man erstelle geeignete Termlisten mit Maxima Online.

Für die Weiterarbeit:

Hintergründe:

Maxima:

  • solve()
  • factor()

 

Binomialverteilung und Approximation durch Normalverteilung

Aufgabe:

Eine faire Münze wird 80 mal geworfen. Wie groß ist die Wahrscheinlichkeit
a) höchstens 45 mal
b) zwischen 36 und 42 mal „Kopf“ zu werfen?

Programmcode:

""/* BINOMIALVERTEILUNG */;
n:80;p:1/2;
W(k):=binomial(n,k)*p**k*(1-p)**(n-k);
WA:sum(W(k),k,0,45),numer;WA:floor(WA*10000+0.5)/10000.0;
WB:sum(W(k),k,36,42),numer;WB:floor(WB*10000+0.5)/10000.0;
""/* NORMALVERTEILUNG */;
m:n*p;s:sqrt(n*p*(1-p));
load(distrib)$
WA:cdf_normal(45,m,s),numer;WA:floor(WA*10000+0.5)/10000.0;
WB:cdf_normal(42,m,s)-cdf_normal(36,m,s),numer;
WB:floor(WB*10000+0.5)/10000.0;

Maxima Online:
http://maxima-online.org/?inc=r-1791114831
auch Binomialverteilung mit Unterprogramm:
http://maxima-online.org/?inc=r680017970

Übungen (mit Binomialverteilung):

1. Wie groß ist die Wahrscheinlichkeit
a) mindestens 30 mal Kopf,
b) 30 bis 50 mal Kopf,
c) höchstens 50 mal Kopf zu werfen?
2. Wie (1) aber mit insgesamt 90 Würfen.

Für die folgenden Aufgaben verwenden wir das GeogebraBook. Zwischenresultate können auch auf Papier notiert werden.

3. Man zeichne die Binomialverteilung für n=80 und p=1/2 mit 
   Blatt(1,1).
4. Man berechne W(x<45) für n=80 und p=1/2 mit Blatt(1,1).
5. Man berechne W(35<x<50) für n=80 und p=1/2 mit Blatt(1,1).

 


GeogebraBook zum Thema: http://geogebratube.org/student/b119421#


Lineare Regression

Learning App: http://LearningApps.org/view361083

Man kontrolliere die einzelnen Rechnungen mit dem Geogebrazeichenblatt: http://www.geogebratube.org/student/m96676

Maxima-Online: http://maxima-online.org/?inc=r-2113822514


Geogebrabook zum Thema: http://geogebratube.org/student/b119441#


Eine Polynomfunktion zu einer gegebenen Punkteliste bestimmen

Aufgabe:

Zu einer gegebenen (und geeigneten) Liste von Punkte ist die passende Polynomfunktion zu bestimmen. Der Grad des Polynoms ist automatisch um eins kleiner als die Anzahl der Punkte!

Programmcode:

kill(all);
Punkt:[[-3,0],[0,3],[2,0],[5,0]];
n:length(Punkt);
Grad:n-1;
g(x):=x[2]=sum(a[i]*x[1]^(n-i),i,1,Grad)+a[n];
Gleichungen:map(g,Punkt);
Unbekannte:makelist(a[i],i,1,n);
l:solve(Gleichungen,Unbekannte);
y=Unbekannte.makelist(x^(n-i),i,1,n),l;

Maxima Online: http://maxima-online.org/?inc=r-1848088314

Erklärung der Berechnung: prog-punkte

  1. Löschen aller Speicher (nicht notwendig!).
  2. Liste der gegebenen Punkte –> EINGABE (darf verändert werden).
  3. Anzahl der gegebenen Punkte.
  4. Der Grad des gesuchten Polynoms ist um eins kleiner als die Anzahl der gegebenen Punkte.
  5. Funktionsmuster für die Bestimmungsgleichung der Polynomfunktion.
  6. Das Funktionsmuster auf die Punkteliste anwenden. Die Koordinaten der Punkte werden eingesetzt und die Liste der Gleichungen automatisch erzeugt.
  7. Die Liste der Unbekannten erzeugen. Die Verwendung von indizierten Koeffizienten ist notwendig.
  8. Lösung des Gleichungssystems.
  9. Die gesuchte Funktion mit Skalarmultiplikation (von Vektoren = Listen) erzeugen.

Noch eine Aufgabe inkl. Graph und Faktorenzerlegung:
http://maxima-online.org/?inc=r-1201857931