Geplanter Inhalt

Grundlagen,
Funktionen,
Listen,
Lineare Algebra,
Boolesche Algebra,
Statistik,
Wahrscheinlichkeitsrechnung;
Finanzmathematik,
Geometrie und Trigonometrie,
Analysis.
Advertisements

Einfache Wahrscheinlichkeitsrechnung

Aufgaben:

  1. Messergebnis:[0,0,2,2,5,4,6,0,9,10,6,5,11,6,6,15,14,1,0,17].
    a) Bestimme die Häufigkeiten.
    b) Bestimme W(x>2).
    c) Wie hoch ist der Erwartungswert?
  2. Messergebnis:[1,2,1,0,5,1,5,6,9,7,1,6,12,14,15,3,7,10,8,12,8,9,8,19,24].
    a) Bestimme die Häufigkeiten.
    b) Bestimme W(x>3).
    c) Wie hoch ist der Erwartungswert?
  3. Messergebnis:[0,0,2,2,5,4,6,0,9,2,3,4,10,8,11,0,6,5,11,6,6,15,14,1,0,17].
    a) Bestimme die Häufigkeiten.
    b) Bestimme W(x>1).
    c) Wie hoch ist der Erwartungswert?

Strichliste – Sortieren hilft:

tipp1a

Strichliste zu 1a:
strichliste_1

Vollständige Lösung Tabellenkalkulation:
Tabellenkalkulation lässt sich gut anwenden, hat aber einen kleinen Nachteil: die Anzahl der Messergebnisse erfordert jeweils Anpassungen. Die Ausgabe ist sehr schön, die mathematische Vorgangsweise aber eher weniger transparent.

strichliste_2

Programmcode:

load(descriptive);
x:[0,0,2,2,5,4,6,0,9,10,6,5,11,6,6,15,14,1,0,17];
k:2;
G:discrete_freq(x);
X:G[1];
H:G[2];
n:length(H);
N:sum(H[i],i,1,n);
p:H/N;
W:sum(p[i],i,k+1,n);
E:sum(p[i]*X[i],i,1,n),numer;
E:floor(E*10+0.5)/10.0;

Das Unterprogramm descriptive ermöglicht Gruppierung mit discrete_freq()

Programmcode mit benutzerdefinierter Funktion:

A:[[0,0,2,2,5,4,6,0,9,10,6,5,11,6,6,15,14,1,0,17],2]
/* EINGABE kann verändert werden */;
f(x,k):=block(
load(descriptive),
G:discrete_freq(x),
X:G[1],
H:G[2],
n:length(H),
N:sum(H[i],i,1,n),
p:H/N,
W:sum(p[i],i,k+1,n),
E:sum(p[i]*X[i],i,1,n),numer,
E:floor(E*10+0.5)/10.0,
"Ergebnis"
);
f(A[1],A[2]);
display(W,E);

Ausführung mit Maxima Onlinehttp://maxima-online.org/?inc=r-1301181831

Programmcode (alle Aufgaben auf einmal):

f(L):=block(
load(descriptive),
Ergebnis:[],
G:discrete_freq(L[1]),
X:G[1],
H:G[2],
n:length(H),
N:sum(H[i],i,1,n),
p:H/N,
W:sum(p[i],i,L[2]+1,n),
E:sum(p[i]*X[i],i,1,n),numer,
E:floor(E*10+0.5)/10.0,
Ergebnis:append(Ergebnis,[W,E])
);
Aufgaben: matrix(
[[0,0,2,2,5,4,6,0,9,10,6,5,11,6,6,15,14,1,0,17],2],
[[1,2,1,0,5,1,5,6,9,7,1,6,12,14,15,3,7,10,8,12,8,9,8,19,24],3],
[[0,0,2,2,5,4,6,0,9,2,3,4,10,8,11,0,6,5,11,6,6,15,14,1,0,17],1]
)
/* Eingabe darf geändert werden */;
A:args(Aufgaben);
map(f,A);

Es gibt also 3 wesentliche Schritte:

pap

Die Ausführung mit Maxima Online: http://maxima-online.org/?inc=r-607858086

Hinweis: ohne Computerunterstützung ist die Anwendung der Gegenwahrscheinlichkeit anzuraten.

Der Google Taschenrechner

Der Google Taschenrechner (einfach die Google-Suchmaschine) kann

  1. problemlos verwendet werden, zur Aktivierung muss man eine einfache Rechnung suchen, z.B. 1+1=  und
  2. auch als Ausgangspunkt für Problemstellungen dienen!

http://youtu.be/pik_oxIwuAE

Anmerkung: in diesem Youtube-Video wird auch berechnet, wie viele Möglichkeiten es beim österreichischen Lotto 6 aus 45 geht (Kombinatorik).

Aufgaben:

Man bearbeite den Inhalt des obigen Filmes mit
a) Maxima und
b) Geogebra.

Ob mit Geogebra in der Wahrscheinlichkeitsrechnung bzw, Kombinatorik auch etwas geht?
Antwort: JA!

Fakultäten:

image

Lottoaufgabe:

image

Der Kauf eines Taschenrechners ist überflüssig.

Aufgaben:

Man berechne mit dem Google Taschenrechner:

rwdr-tabelle

Man mache auch Kontrollrechnungen mit Maxima-Online!

Wahrscheinlichkeitsverteilung

Eine Schularbeitsstatistik nach dem österreichischen Notensystem:

Wahrscheinlichkeitsverteilung

Fragen zum “Aufwärmen”:

  1. Wie viele Schüler/innen haben mitgemacht?
  2. Wie viele Schüler/innen haben die Note 2 = “Gut” bekommen?
  3. Wie viele Schüler/innen haben die Note 5 = “Nicht genügend”
    bekommen?
  4. Wie viele Schüler/innen haben eine positive Note bekommen?

Programmcode für die Bestimmung der Wahrscheinlichkeitsverteilung:

X:[1,2,3,4,5];
H:[2,6,3,4,5];
n:length(X);
N:sum(H[i],i,1,n);
P:H/N;
Kontrolle:sum(P[i],i,1,n);

Fragen zur Wahrscheinlichkeitsverteilung der Schularbeitsnoten:

1. Wie groß ist die Wahrscheinlichkeit, dass die Note besser 
   als 3 ist?
2. Wie groß ist die Wahrscheinlichkeit, dass die Note schlechter 
   als 2 ist?
3. Wie groß ist die Wahrscheinlichkeit, dass die Note 
   bestenfalls 2 ist?
4. Wie groß ist die Wahrscheinlichkeit für eine positive Note?

Berechnungen mit Maxima Online: http://maxima-online.org/?inc=r1532874979
mit Fragen: http://maxima-online.org/?inc=r-120341521

Binomialverteilung und Approximation durch Normalverteilung

Aufgabe:

Eine faire Münze wird 80 mal geworfen. Wie groß ist die Wahrscheinlichkeit
a) höchstens 45 mal
b) zwischen 36 und 42 mal „Kopf“ zu werfen?

Programmcode:

""/* BINOMIALVERTEILUNG */;
n:80;p:1/2;
W(k):=binomial(n,k)*p**k*(1-p)**(n-k);
WA:sum(W(k),k,0,45),numer;WA:floor(WA*10000+0.5)/10000.0;
WB:sum(W(k),k,36,42),numer;WB:floor(WB*10000+0.5)/10000.0;
""/* NORMALVERTEILUNG */;
m:n*p;s:sqrt(n*p*(1-p));
load(distrib)$
WA:cdf_normal(45,m,s),numer;WA:floor(WA*10000+0.5)/10000.0;
WB:cdf_normal(42,m,s)-cdf_normal(36,m,s),numer;
WB:floor(WB*10000+0.5)/10000.0;

Maxima Online:
http://maxima-online.org/?inc=r-1791114831
auch Binomialverteilung mit Unterprogramm:
http://maxima-online.org/?inc=r680017970

Übungen (mit Binomialverteilung):

1. Wie groß ist die Wahrscheinlichkeit
a) mindestens 30 mal Kopf,
b) 30 bis 50 mal Kopf,
c) höchstens 50 mal Kopf zu werfen?
2. Wie (1) aber mit insgesamt 90 Würfen.

Für die folgenden Aufgaben verwenden wir das GeogebraBook. Zwischenresultate können auch auf Papier notiert werden.

3. Man zeichne die Binomialverteilung für n=80 und p=1/2 mit 
   Blatt(1,1).
4. Man berechne W(x<45) für n=80 und p=1/2 mit Blatt(1,1).
5. Man berechne W(35<x<50) für n=80 und p=1/2 mit Blatt(1,1).

 


GeogebraBook zum Thema: http://geogebratube.org/student/b119421#


Verschiedene Aufgaben

Alle Aufgaben haben diese Bilder als Basis: http://lungau-academy.at/Mathe_Aufgaben_1/
(
die grafischen Darstellungen sind teilweise sehr ungewöhnlich)

Konstruktivistischer Ansatz: Die grafischen Darstellungen (Bilder) sollen dazu verwendet werden, möglichst viele Aufgabenstellungen selbst zu finden und zu lösen.

1. Aufgabehttp://lungau-academy.at/Mathe_Aufgaben_1/target0.html

Enthaltene Information:

X:[1,2,3,4,5];
H:[4,2,4,2,4];

1.1 Fragen (ohne Technologieeinsatz)

  • Wie viele Schüler/innen hatten eine bessere Note als „3“?
  • Wie viele Schüler/innen haben mitgeschrieben?
  • Wie viele Schüler/innen hatten eine schlechtere Note als „3“?

Lösung:

H:[4,2,4,2,4];
H[1]+H[2];
sum(H[i],i,1,5);
H[4]+H[5];

1.2 Grafiken

a) mit Geogebra

b) mit Maxima

X:[1,2,3,4,5];
H:[4,2,4,2,4];
daten:[discrete,X,H];
plot2d(daten);

Ausführung mit Maxima Online: http://maxima-online.org/?inc=r-1899776284

1.3 Kennzahlen

1.4 Interpolationspolynom

Die Daten lassen sich mit einem Interpolationspolynom vierten Grades darstellen. Man berechne dieses

a) mit Geogebra-CAS

b) mit Maxima

Verteilung:matrix([1,4],[2,2],[3,4],[4,2],[5,4]);
Punkte:args(Verteilung);
g(x):=x[2]=a*x[1]^4+b*x[1]^3+c*x[1]^2+d*x[1]+e;
Gleichungen:map(g,Punkte);
Unbekannte:[a,b,c,d,e];
l:solve(Gleichungen,Unbekannte);
Polynom:y=a*x^4+b*x^3+c*x^2+d*x+e,l[1];
plot2d(rhs(Polynom),[x,1,5]);

Maxima Online: http://maxima-online.org/?inc=r-1708056245
zusätzlich mit diskretem Plot: http://maxima-online.org/?inc=r-415933785