Das Marktgleichtgewicht

Aufgabe:

Marktgleichgewicht

Das Marktgleichgewicht ist der Schnittpunkt von Angebotsfunktion und Nachfragefunktion.

Beispiel:

n(x):=-0.2*x + 10;
a(x):= 2*x+2;
g:a(x)=n(x);
l:realroots(g),numer;
x1:ev(x,l);
n(x1);
a(x1);
plot2d([a(x),n(x)],[x,0,50]);

Probelauf mit Maxima Onlinehttp://maxima-online.org/?inc=r-725194680

 

Lineare Kostenfunktion

Aufgabe:

Man zerlege eine lineare Kostenfunktion.

Programmcode:

K(x):=5*x+10000 /* Kostenfunktion */;
F:K(0) /* Fixkosten, Stillstandskosten, Bereitschaftskosten */;
V(x):=K(x)-F /* Variable Kosten */;
k:V(1) /* Proportionale Kosten */;
k:V(x)/x /* Proportionale Kosten */;

Ausführung mit Maxima Online:  http://maxima-online.org/?inc=r-1857890763

Übung 1:

Lineare_Kostenfunktion_Aufgabe

 

Übung 2:

Lineare_Kostenfunktion_Grafik

 

Buch: Kosten- und Preistheorie

Um ein altes Versprechen einzulösen, habe ich etwas zum Thema „Kosten- und Preistheorie“ mit CAS Maxima und Geogebra für http://www.lehrer-online.de geschrieben. Gedacht ist es für den Mathematikunterricht in der Sekundarstufe II. Analysis ist Voraussetzung!

Hier ist der Link zum WebReader (hier kann man die jeweils aktuelle Version online lesen).
http://papyrusebook.com/web/14543/Kosten-und-Preistheorie

Hier ist der Link zur Verkaufsseite, wo man das Buch im PDF-, EPUB- oder MOBI-Format kostenlos herunterladen kann!
http://papyrusebook.com/b/14543/Kosten-und-Preistheorie

Wer sich dafür erkenntlich zeigen möchte, kann den Link dieser Information auf Facebook, Google+ oder Twitter verbreiten.

Titeldbild

 

Preisobergrenze und Sättigungsmenge

Aufgabe:

Eine Nachfragefunktion ist gegeben durch p(x) = 0,11 x² -15 x +4,39 im Intervall [0,xs].
xs ist die Sättigungsmenge, wir müssen sie erst bestimmen.

Man bestimme

  1. die Sättigungsmenge und
  2. die Preisobergrenze

und zwar mit dem Geogebrazeichenblatt und mit Maxima Online.

Die notwendigen Programme findest du hier: https://casmaxima.wordpress.com/hilfe/software/

 

 

S-förmiger Kostenverlauf

Begriffserklärung:
Eine Kostenfunktion stellt (innerhalb der Wirtschaftswissenschaften) eine eindeutige Zuordnung der Kosten K(x) zu einer Bezugsgröße x  dar.
Unsere Bezugsgröße ist meistens die Produktionsmenge in ME (Mengenheiten, z.B. Stück).
Ein s-förmiger Kostenverlauf (zuerst degressiv und nach der Kostenkehre progressiv) lässt sich aus dem Gesetz vom abnehmenden Grenzertrag herleiten. Die praktische Anwendbarkeit wird allerdings angezweifelt.

Ausgangssituation:

In den Mathematiklehrbüchern werden bei den Aufgaben der Kosten- und Preistheorie häufig Funktionen vorgegeben. Zur Theorie passende Funktionen muss man aber erst einmal finden.
Hier hilft Geogebra: http://www.geogebratube.org/student/m108070
Erklärung zur „Konstruktion“:sfkk_konstruktionDurch Ziehen an den Punkten kann man die Aufgabenstellungen einfach verändern.
Man kann die Geogebra-Datei für die lokale Verwendung herunterladen: http://www.geogebratube.org/material/download/format/file/id/108070

Aufgaben für die Lösung mit Maxima:

  1. Man bestimme die Kostenfunktion aus den Punkten A,B,C und D.
  2. Man bestimme die Fixkosten.
  3. Man bestimme die Kostenkehre.
  4. Man bestimme das Betriebsoptimum.
  5. Man bestimme die langfristige Preisuntergrenze.

Ein ungewöhnlicher Programmcode zur Bestimmung der Kostenfunktion:Berechnung von PolynomfunktionenWenn in Zeile (1) zwei Punkte gegebenen sind, erhält man eine lineare, bei drei Punkten eine quadratische und bei vier Punkten eine kubische Kostenfunktion. Um die kubische Kostenfunktion geht es beim s-förmigen Kostenverlauf.

Erklärung, wie das Programm Nr. 1 welches nicht nur für kubische, sondern auch für lineare und quadratische Kostenfunkitonen geeignet ist, funktioniert:

  1. Eingabe der gegebenen Punkte in Listenform.
  2. Da zwei, drei oder vier Punkte sinnvoll sein können, muss das Programm prüfen, wie viele Punkte gegeben sind.
  3. Der Grad des Polynoms ist um eins niedriger als die Anzahl der Punkte.
  4. Hier  wird ein raffinierter Ansatz verwendet.
    g(x) ist eine Funktion mit einem Punkt x:[x[1],x[2]] als Argument.
    Die Obergrenze der Summation muss n-1 = Grad und nicht n sein, da sonst der unbestimmte Fall 0^0 auftreten könnte. Dafür einfach a[n] ausserhalb hinzufügen.
  5. Die zwei, drei oder vier Gleichungen werden automatisch mit map erzeugt.
  6. Wie wir in (4) bemerkt haben, sind die unbekannten Koeffizienten nicht a,b,c,… sondern a[1],a[2],…,a[n].
  7. Die Lösungsmenge des Gleichungssystems wird ermittelt.
  8. Mit Hilfe der Skalarmultiplikation von Vektoren (Listen) wird die Kostenfunktion berechnet und ausgegeben.

Lösungen mit Maxima-Online unter Verwendung eines früheren Programms: https://casmaxima.wordpress.com/2014/04/08/ein-polynom-zur-einer-gegebenen-punkteliste-bestimmen/

  1. http://maxima-online.org/?inc=r-1197448632
  2. http://maxima-online.org/?inc=r-375516577
  3.  http://maxima-online.org/?inc=r-32032642
  4. http://maxima-online.org/?inc=r1686026510
  5. http://maxima-online.org/?inc=r1686026510